Foveal to peripheral extrapolation of brightness within objects.

نویسندگان

  • Matteo Toscani
  • Karl R Gegenfurtner
  • Matteo Valsecchi
چکیده

Peripheral viewing is characterized by poor resolution and distortions as compared to central viewing; nevertheless, when we move our gaze around, the visual scene does not appear to change. One possible mechanism leading to perceptual uniformity would be that peripheral appearance is extrapolated based on foveal information. Here we investigate foveal-to-peripheral extrapolation in the case of the perceived brightness of an object's surface. While fixating a spot on the rendered object, observers were asked to adjust the brightness of a disc to match a peripherally viewed target area on the surface of the same object. Being forced to fixate a better illuminated point led to brighter matches as compared to fixating points in the shadow, indicating that foveal brightness information was extrapolated. When observers fixated additional points outside of the object on the scene's background, fixated brightness had no effect on the brightness match. Results indicate that our visual system uses the brightness of the foveally viewed surface area to estimate the brightness of areas in the periphery. However, this mechanism is selectively applied within an object's boundary.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temporally flexible feedback signal to foveal cortex for peripheral object recognition.

Recent studies have shown that information from peripherally presented images is present in the human foveal retinotopic cortex, presumably because of feedback signals. We investigated this potential feedback signal by presenting noise in fovea at different object-noise stimulus onset asynchronies (SOAs), whereas subjects performed a discrimination task on peripheral objects. Results revealed a...

متن کامل

Disruption of Foveal Space Impairs Discrimination of Peripheral Objects

Visual space is retinotopically mapped such that peripheral objects are processed in a cortical region outside the region that represents central vision. Despite this well-known fact, neuroimaging studies have found information about peripheral objects in the foveal confluence, the cortical region representing the fovea. Further, this information is behaviorally relevant: disrupting the foveal ...

متن کامل

Combining peripheral and foveal humanoid vision to detect, pursue, recognize and act

In this paper we present a humanoid system that can integrate information provided by its foveal and peripheral cameras. We use peripheral vision to detect and pursue objects of interest based on simple shape and color models. A detection event triggers the robot to direct its eyes towards the object, thus making a more detailed analysis of the observed objects in higher resolution foveal image...

متن کامل

Locating the cortical bottleneck for slow reading in peripheral vision.

Yu, Legge, Park, Gage, and Chung (2010) suggested that the neural bottleneck for slow peripheral reading is located in nonretinotopic areas. We investigated the potential rate-limiting neural site for peripheral reading using fMRI, and contrasted peripheral reading with recognition of peripherally presented line drawings of common objects. We measured the BOLD responses to both text (three-lett...

متن کامل

Troxler fading, eye movements, and retinal ganglion cell properties

We present four movies demonstrating the effect of flicker and blur on the magnitude and speed of adaptation for foveal and peripheral vision along the three color axes that isolate retinal ganglion cells projecting to magno, parvo, and konio layers of the LGN. The demonstrations support the eye movement hypothesis for Troxler fading for brightness and color, and demonstrate the effects of flic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of vision

دوره 17 9  شماره 

صفحات  -

تاریخ انتشار 2017